27 research outputs found

    THE IMPORTANCE OF CONSISTENT KINEMATIC DATA IN THE INVERSEDYNAMIC ANALYSIS OF BIOMECHANICAL MODELS

    Get PDF
    INTRODUCTION: The evaluation of the muscular actions and internal forces of human articular joints is of major importance in different areas of medicine, sports, physical rehabilitation or biomedical engineering. There is no experimental methodology that can directly measure these forces. Among the numerical procedures that can be applied, inverse dynamics based methods are still the most commonly used numerical tools. Their use requires that the kinematics of human motion, i.e., the positions, velocities and accelerations of the anatomical points, be known in advance. This is obtained by standard reconstruction methods based on the DLT technique (Aziz and Karara, 1971). Moreover, the equations of motion for the system must be associated to a biomechanical model (Celigueta, 1996; Silva et al., 1997). The muscle action may be obtained by having each particular group of muscles, defined as those with similar functions and common anatomical insertions, modeled independently and included in the biomechanical model (An et al., 1995). This leads to an indeterminate problem, in terms of the unknown forces, that can be solved using the optimization theory (Pedotti et al., 1978). Alternatively, the actions of the different muscle groups can be lumped as moments about anatomical joints leading to a determinate inverse dynamics problem (Winter, 1991). Regardless of the biomechanical model used or of the way the muscle actions are described, the results obtained from the inverse dynamic analysis are related to the quality of the kinematic data supplied. The problem of the consistency of this kinematic data with respect to the biomechanical model used is addressed in this work, it being shown that the quality of the inverse dynamics analysis results is highly dependent on the data kinematic consistency

    The Effect of the Copigment on the pH-Dependent Reversible and Irreversible Processes

    Get PDF
    no 219201Intermolecular copigmentation of malvidin-3-O-glucoside with caffeine was studied using a holistic procedure that includes the extension to basic pH values. In moderately basic solutions (7.5 < pH < 9.5) and independently of the copigment presence, there is a pH region where degradation of the quinoidal base and anionic quinoidal bases is faster than hydration and OH-nucleophilic addition, preventing the system from reaching the equilibrium. Intermolecular copigmentation with caffeine reduces significantly the degradation rate of quinoidal bases. In a more basic medium, the equilibrium is reached and degradation occurs from the anionic chalcones. In this case, the addition of caffeine also reduces the degradation rate in the interval 10 < pH < 11.5.publishersversionpublishe

    Thermal and photochemical reactions of n-pyridinebenzopyrylium multistate of species (n = 2′,3′,4′). Exploring the synthetic potentialities from the unique reactivity of position 2′

    Get PDF
    Funding Information: This work was supported by the Associate Laboratory for Green Chemistry – LAQV (projects UIDB/50006/2020 and UIDP/ 50006/2020), the Research Unit on Applied Molecular Biosciences – UCIBIO (projects UIDP/04378/2020 and UIDB/ 04378/2020) and the Associate Laboratory Institute for Health and Bioeconomy – i4HB (project LA/P/0140/2020) which are financed by national funds from FCT/MCTES. FCT/MCTES is also acknowledged for supporting the National Portuguese NMR Network (ROTEIRO/0031/2013–PINFRA/22161/2016, cofinanced by FEDER through COMPETE 2020, POCI, PORL, and FCT through PIDDAC). A. C. acknowledges financing from Fundação Calouste Gulbenkian, grant no. 219201, and from the Angolan Embassy in Lisbon, Portugal, INAGBE grant. Dr. Ramesh Pandian is acknowledged for the initial acquisition and processing of single crystal X-ray data. Publisher Copyright: © 2023 The Author(s)The kinetics and thermodynamics of the pH-dependent multistate of species generated by the trans-chalcone of n-pyridinebenzopyrylium (n = 2′, 3′) were studied by UV–vis spectroscopy, 1H NMR and HPLC-MS, and the results compared with those reported for n = 4′. Due to the slow kinetics of the multistate species interconversion, the conjugation of these techniques has shown to be a powerful tool to investigate the behaviour of these systems. The species involved in the multistate are mutatis mutandis the same observed in anthocyanins and related compounds except for the flavylium cation, which was not observed in these systems even in very acidic medium. The rates of the interconversion of the multistate species upon pH stimuli are much slower than in anthocyanins. The compound bearing the pyridine nitrogen in position 2′ gives two novel products absorbing in the visible. Formation of the new products is particularly efficient from the thermal evolution of the photochemical products obtained upon light irradiation of the protonated trans-chalcone in a mixture of methanol:acidic water (1:1). This confirms the unique capacity of the substituents in position 2′ in giving intramolecular reactions involving the benzopyrylium core. Crystal structures for the three pyridine chalcone compounds (n = 2′, 3′, 4′) were obtained and the respective structures discussed.publishersversionpublishe

    A model compound for pyridinechalcone-based multistate systems. Ring opening-closure as the slowest kinetic step of the multistate

    Get PDF
    UID/QUI/50006/2019. PTDC/QEQ-QFI/1971/2014. PTDC/QUI-COL/32351/2017. PTDC/QUI-QFI/30951/2017. grant no. 219201.Anthocyanins and related flavylium derivatives exist in aqueous solution as a pH-dependent mole fraction distribution of species (a multistate system) with known biological activity. Introduction of nitrogen heterocycles in the flavylium core can lead to multistates with different constitution and increased activity. Compound 1, a diethylamino derivative of 4-pyridinechalcone, was synthesized and characterized by X-ray crystallography, showing a pH-dependent reaction network similar to anthocyanins and related compounds. The several species present at the equilibrium multistate were fully characterized by 1H NMR and 13C NMR. The thermodynamics and kinetics of the multistate were studied through pH jumps followed by 1H NMR and UV-vis absorption including stopped-flow for the faster kinetic steps. In the parent 4-pyridinechalcone compound, protonation of the pyridine nitrogen for pH 4 prevents formation of the flavylium cation. In compound 1, the first protonation takes place in the diethylamino substituent and in acidic medium, two new flavylium derivatives, a single (2 pH 4) and a double (pH 1) positively charged species, in equilibrium with protonated hemiketal, cis and trans chalcones, have been characterized. Differently from anthocyanins and related compounds, experimental evidence for an unexpected very slow (0.0003 s-1) ring opening-closure between the hemiketal and the cis-chalcone (tautomerization) was achieved.publishe

    A study on wear evaluation of railway wheels based on multibody dynamics and wear computation

    No full text
    The wear evolution of railway wheels is a very important issue in railway engineering. In the past, the reprofiling intervals of railway vehicle steel wheels have been scheduled according to designers' experience. Today, more reliable and accurate tools in predicting wheel wear evolution and wheelset lifetime can be used in order to achieve economical and safety benefits. In this work, a computational tool that is able to predict the evolution of the wheel profiles for a given railway system, as a function of the distance run, is presented. The strategy adopted consists of using a commercial multibody software to study the railway dynamic problem and a purpose-built code for managing its pre- and post-processing data in order to compute the wear. The tool is applied here to realistic operation scenarios in order to assess the effect of some service conditions on the wheel wear progression

    A mathematical framework for contact detection between quadric and superquadric surfaces

    Get PDF
    The calculation of the minimum distance between surfaces plays an important role in computational mechanics, namely, in the study of constrained multibody systems where contact forces take part. In this paper, a general rigid contact detection methodology for non-conformal bodies, described by ellipsoidal and superellipsoidal surfaces, is presented. The mathematical framework relies on simple algebraic and differential geometry, vector calculus, and on the C2 continuous implicit representations of the surfaces. The proposed methodology establishes a set of collinear and orthogonal constraints between vectors defining the contacting surfaces that, allied with loci constraints, which are specific to the type of surface being used, formulate the contact problem. This set of non-linear equations is solved numerically with the Newton-Raphson method with Jacobian matrices calculated analytically. The method outputs the coordinates of the pair of points with common normal vector directions and, consequently, the minimum distance between both surfaces. Contrary to other contact detection methodologies, the proposed mathematical framework does not rely on polygonal-based geometries neither on complex non-linear optimization formulations. Furthermore, the methodology is extendable to other surfaces that are (strictly) convex, interact in a non-conformal fashion, present an implicit representation, and that are at least C2 continuous. Two distinct methods for calculating the tangent and binormal vectors to the implicit surfaces are introduced: (i) a method based on the Householder reflection matrix; and (ii) a method based on a square plate rotation mechanism. The first provides a base of three orthogonal vectors, in which one of them is collinear to the surface normal. For the latter, it is shown that, by means of an analogy to the referred mechanism, at least two non-collinear vectors to the normal vector can be determined. Complementarily, several mathematical and computational aspects, regarding the rigid contact detection methodology, are described. The proposed methodology is applied to several case tests involving the contact between different (super)ellipsoidal contact pairs. Numerical results show that the implemented methodology is highly efficient and accurate for ellipsoids and superellipsoids.Fundação para a Ciência e a Tecnologia (FCT

    Development of a planar multi-body model of the human knee joint

    Get PDF
    The aim of this work is to develop a dynamic model for the biological human knee joint. The model is formulated in the framework of multibody systems methodologies, as a system of two bodies, the femur and the tibia. For the purpose of describing the formulation, the relative motion of the tibia with respect to the femur is considered. Due to their higher stiffness compared to that of the articular cartilages, the femur and tibia are considered as rigid bodies. The femur and tibia cartilages are considered to be deformable structures with specific material characteristics. The rotation and gliding motions of the tibia relative to the femur can not be modeled with any conventional kinematic joint, but rather in terms of the action of the knee ligaments and potential contact between the bones. Based on medical imaging techniques, the femur and tibia profiles in the sagittal plane are extracted and used to define the interface geometric conditions for contact. When a contact is detected, a continuous non-linear contact force law is applied which calculates the contact forces developed at the interface as a function of the relative indentation between the two bodies. The four basic cruciate and collateral ligaments present in the knee are also taken into account in the proposed knee joint model, which are modeled as non-linear elastic springs. The forces produced in the ligaments, together with the contact forces, are introduced into the system’s equations of motion as external forces. In addition, an external force is applied on the center of mass of the tibia, in order to actuate the system mimicking a normal gait motion. Finally, numerical results obtained from computational simulations are used to address the assumptions and procedures adopted in this study.Fundação para a Ciência e a Tecnologia (FCT

    On the contact detection for contact-impact analysis in multibody systems

    Get PDF
    One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time step integration algorithms are used and the pre-impact dynamics does not involve high-frequencies the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency and its ability to deal with the transitions between non contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.Fundação para a Ciência e a Tecnologia (FCT

    Para o estudo da evolução do ensino e da formação em administração educacional em Portugal

    Get PDF
    Estudos sobre a evolução do ensino de disciplinas, na formação de professores em Portugal, são recentes. O controle burocrático centralizado reteve as dimensões do controle político-administrativo. De certo modo, protegeu a esfera educativa das influências modernizantes, do capitalismo industrial e das lógicas mercantis e gerencialistas. Defendeu a educação do domínio político, da intervenção de movimentos sociais, das propagandas de ideais democráticos e da cidadania. A utilização da designação "Administração educacional" ilustra as dificuldades sentidas, ao longo dos últimos anos, em termos da construção acadêmica de uma área, seja pela falta de tradição, seja pelos antecedentes históricos.In Portugal, studies about the evolution of disciplines teaching in the teachers formation are recent. The centralized bureaucratic control has held back the dimensions of politic administrative control. In a certain way, it has protected the education against the new-fashioned influences, manufacturing capitalism, and mercantile and managerial logics. This centralized bureaucratic control has also profected the education against the politic dominion, the intervention of social movements, the advertising of democratic ideals, and against the citizenship. The use of the term "Educational administration" shows the difficulties met by the searchers along the latest years, since there is no tradiction nor historic antecedence
    corecore